SENSORS RESEARCH AND TECHNOLOGY

James A. Cutts

TECHNOLOGY FOR FUTURE NASA MISSIONS

AN AIAA/OAST CONFERENCE ON CSTI AND PATHFINDER

12 - 13 SEPTEMBER, 1988 WASHINGTON D.C.

·Z ∞

SENSING TECHNIQUES FOR SPACE SCIENCE

PASSIVE REMOTE SENSING

ACTIVE REMOTE SENSING

IN-SITU SENSING

N/S/

SENSOR RESEARCH AND TECHNOLOGY GOALS AND APPROACH

- DEVELOP ENABLING AND ENHANCING SENSOR TECHNOLOGY FOR NASA SPACE SCIENCE MISSIONS
- EMPHASIZE DEVICE AND COMPONENT TECHNOLOGIES WITH MEDIUM-TERM AND LONG RANGE IMPACT
- PROGRAM ELEMENTS ARE
 - PASSIVE REMOTE SENSING TECHNOLOGY
 - COHERENT (HETERODYNE) SENSING
 - NON-COHERENT (DIRECT) SENSING
 - ACTIVE SENSING
 - SPACE COOLER TECHNOLOGY

PASSIVE REMOTE SENSING: TECHNIQUES NASAN AND APPLICATIONS

NASA SUBMILLIMETER COHERENT SENSING

DOPPLER VELOCITY SHIFT

EARTH OBSERVING SYSTEM

TRACE SPECIES DETECTION

LARGE DEPLOYABLE REFLECTOR

HIGH RESOLUTION SPECTRUM

APPLICATIONS

- MEASURE TRACE SPECIES IN ATMOSPHERES OF EARTH AND PLANETS AND ASTROPHYSICAL GASES AND PLASMAS
- MAP DISTRIBUTIONS OF TEMPERATURES AND VELOCITIES

N/S/

COHERENT SENSOR RESEARCH SUBMILLIMETER MIXERS

REQUIREMENTS

- QUANTUM EFFICIENCY > 10%, 300 3000 GHz
- RUGGED PLANAR TECHNOLOGY SUITED TO ARRAYS
- LOW LOCAL OSCILLATOR POWER

APPROACH

DEVELOP THREE
 TECHNOLOGIES TO
 COVER SUBMILLIMETER
 SPECTRAL RANGE AND
 SUITABLE FOR DIFFERENT
 OPERATING TEMPERATURES

SIS TUNNEL JUNCTION

SCHOTTKY BARRIER DIODE IN Ga As

INTERDIGITATED ELECTRODE PHOTOCONDUCTIVE MIXER

NASA COHERENT SENSOR RESEARCH SUBMILLIMETER LOCAL OSCILLATOR SOURCES

REQUIREMENTS

- LOW POWER AND MASS
- COMPACT AND RUGGED
- TUNEABLE 300-3000 GHz
- SPECTRALLY PURE WITH 111 W 1mW OUTPUT

APPROACH

- DEVELOP THREE TECHNOLOGIES TO PROOF-OF-CONCEPT
- SELECT TECHNOLOGY FOR SPACE QUALIFIABLE PROTOTYPE IN 1988

ORIGINAL OF POOR

ALITHON W

COHERENT SENSOR RESEARCH ACCOMPLISHMENTS

MIXERS

- •SIS TUNNEL JUNCTIONS
 - HIGHEST FREQUENCY EVER REPORTED IN LEAD JUNCTIONS (600 GHz) FY 86
 - FIRST DEMONSTRATION OF NbN MIXER FY 88
- IDEPC/MCT DEVICES
 - ACHIEVED 2% QE AT 10 Thz FY 87
 - DESIGNED AND FABRICATED DEVICE FOR 3 THZ OPERATION - FY 88

LOCAL OSCILLATORS

- ALL SOLID STATE OSCILLATORS
 - DEMONSTRATED HIGHEST FREQUENCY FUNDAMENTAL SOLID STATE OSCILLATOR (6 μW @ 420 GHz)
 - DEMONSTRATED HIGH HARMONIC MULTIPLICATION
- BACKWARD WAVE OSCILLATOR
 - FIRST DEMONSTRATION OF OSCILLATION AT 200 GHz

NON-COHEBENT SENSORS

VSVN

ORIGINAL FACE IS OF POOR QUALITY

APPLICATIONS

- MULTISPECTRAL IMAGING OF THE SURFACES OF EARTH AND PLANETS
- MOISTURE AND TEMPERATURE SOUNDING
 OF ATMOSPHERES
- IMAGING AND SPECTROSCOPY OF ASTROPHYSICAL OBJECTS

SPACE STATION

NVSV

NON-COHERENT SENSORS KEY TECHNOLOGIES

SPECTRAL REGION

GAMMA RAY	X-RAY	ULTRA VIOLET	vis	IR	FAR IR	SUBMM	MM WAVE	
-----------	-------	--------------	-----	----	--------	-------	---------	--

NON-COHERENT SENSORS INFRARED TO MILLIMETER WAVE TECHNOLOGY

REQUIREMENTS

- DIVERGENT REQUIREMENTS DEPENDING ON
 - ⇒ SPECTRAL REGION
 - ⇒ SPECTRAL APPLICATION

APPROACH

- ADAPT MATURING DoD-SPONSORED EXTRINSIC-SILICON TECHNOLOGY TO MEET NASA NEEDS FOR FAR IR
- DEVELOP NEW GERMANIUM-BASED TECHNOLOGY FOR SUBMILLIMETER
- DEVELOP ENABLING MATERIALS AND DEVICE TECHNOLOGIES TO MEET LONG RANGE NEEDS FOR LARGE ARRAYS AND HIGHER TEMPERATURE OPERATION

32 x 32 DETECTOR AND MULTIPLEXER

NON-COHERENT SENSORS GAMMA RAY/X-RAY/ULTRAVIOLET

REQUIREMENTS

- HIGH SENSITIVITY
- SPECTRAL RESOLUTION
- MINIMAL COOLING
- DETECTOR ARRAYS WHERE PRACTICAL FROM 10 TO 106 ELEMENTS

ORIGINAL CAGE TO

APPROACH

- TRANSITION CCD TECHNOLOGY TO SPACE SCIENCE APPLICATIONS
- DEVELOP MERCURY IODIDE TO MEET NEEDS WHERE SENSOR COOLING IS IMPRACTICAL

CCD IMAGE OF BETA PICTORIS

MERCURIC IODIDE CRYSTAL FOR GAMMA RAY DETECTION

NON-COHERENT SENSORS ACCOMPLISHMENTS

GAMMA RAY TO ULTRAVIOLET

CCD TECHNOLOGY

• TRANSFERRED TECHNOLOGY TO APPLICATIONS IN SPACE TELESCOPE, GALILEO AND AXAF PROGRAMS

MERCURY IODIDE

• DEMONSTRATED 7% SPECTRAL RESOLUTION FOR 0.661 KeV GAMMA RAYS AT ROOM TEMPERATURE

INFRARED TO MILLIMETER WAVE

- DEMONSTRATED ADVANCED DETECTOR ARRAY TECHNOLOGY BASED ON SILICON (DARK CURRENT <10 e-/sec, NOISE <50 e-)
- PIONEERING DEVELOPMENT OF GERMANIUM BIB TECHNOLOGY FOR SUBMILLIMETER
- DEMONSTRATED EXTENSION FROM 3.5 TO 5.0 μm IN COBALT SILICIDE INFRARED DETECTOR SPECTRAL RESPONSE CUTOFF

ACTIVE REMOTE SENSING

OBJECTIVES

• MAP THE DISTRIBUTION OF WIND VELOCITY, WATER VAPOR AND TRACE GASES IN THE ATMOSPHERE OF THE EARTH

TECHNOLOGY NEEDS

- SOLID STATE LASERS WITH HIGH PULSE POWER AND FREQUENCY
- CARBON DIOXIDE LASERS FOR MEASUREMENT OF DOPPLER SHIFTS OF SCATTERED RADIATION

ACTIVE REMOTE SENSING SOLID STATE LASER DEVELOPMENT

REQUIREMENTS:

- PULSE ENERGIES (~1 JOULE)
- REPETITION RATE (10 Hz)
- EFFICIENCY (>5%)
- SPECTRAL RANGE (1μm-20μm)
- SPECTRALLY TUNABLE

ACTIVE SENSOR RESEARCH ACCOMPLISHMENTS

CO₂ LASERS

• DEVELOPED CATALYST TECHNOLOGY FOR LONG LIFE TIME APPLICATIONS. PLANNED FOR USE IN LAWS PROGRAM

SOLID STATE LASERS

- PIONEERED DEVELOPMENT OF TITANIUM SAPPHIRE TECHNOLOGY
- CONCEIVED NEW APPROACHED FOR ACTIVE SENSING IN MID INFRA RED

SPACE COOLER TECHNOLOGY PROGRAM GOALS

NEEDS:

SENSOR COOLING FROM 150K
 TO SUBKELVIN (<1K) TEMPERATURE

CONSTRAINTS:

- POWER AND MASS BUDGETS OF SPACECRAFT EXTREMELY TIGHT
- LONG LIFETIME AND RELIABILITY PARAMOUNT
- ULTRA LOW VIBRATION AND EMI ARE CRITICAL FOR MANY APPLICATIONS

APPROACH:

- STRESS ADVANCES IN COMPONENT TECHNOLOGY WITH ORDER-OF-MAGNITUDE PERFORMANCE IMPACT
- EXPLORE INNOVATIVE SYSTEM CONCEPTS FOR SOLVING PROBLEMS IMPOSED BY SPACE ENVIRONMENT

SPACE COOLER TECHNOLOGY LOW VIBRATION COOLER (65-80K)

LOW VIBRATION MECHANICAL COMPRESSOR

SORPTION COMPRESSOR

SORBENT

RADIATION SHIELD

HEATER

GAS/VACUUM PORT FOR HEAT SWITCH HEAT SINK

REQUIREMENTS

- COOLING TO THE RANGE FROM 10 - 150K
- · LOADS UP TO 5W
- ULTRA LOW VIBRATION
- HIGH EFFICIENCY, POWER LESS THAN 200W
- · LIFE TIMES > 5 YEARS

UNBALANCED COMPRESSORS UNBALANCED FORCE COMPENSATOR TO DISPLACER

PULSE TUBE REFRIGERATION

PULSE TUBE HEAT RESERVOIR VOLUME FROM COMPRESSOR

RECUPERATIVE HEAT

APPROACH

 DEVELOP KEY COMPONENTS OF SYSTEMS WITH POTENTIAL OF MEETING THESE REQUIREMENTS

NASA SPACE CRYOCOOLER TECHNOLOGY SEPARATION OF LIQUID HELIUM (³He AND ⁴He) AND VAPOR PHASE IN ZERO-G

REQUIREMENTS:

- EFFICIENT SEPARATION OF LIQUID AND GAS PHASES FOR
 - → ³He⁻⁴He DILUTION REFRIGERATION
 - → ON ORBIT TRANSFER OF LIQUID HELIUM

APPROACH:

- INVESTIGATE AND CHARACTERIZE NON-GRAVITATIONAL PHASE SEPARATION PHENOMENA
- FABRICATE AND DEMONSTRATE DEVICES FOR ACHIEVING PHASE SEPARATION FOR REFRIGERATOR AND CRYOGEN TRANSFER APPLICATIONS

HE-II PHASE SEPARATOR

ELECTROSTATIC SEPARATION OF ³He-⁴He LIQUIDS

PARALLEL PLATES WITH HIGH ELECTRIC FIELD

SURFACE TENSION SEPARATION OF ³He-⁴He LIQUIDS

30

SPACE COOLER RESEARCH ACCOMPLISHMENTS

- NEW PROGRAM INITIATED IN FY 88
- FORMULATED A COHERENT MULTICENTER NASA PROGRAM
 TO ADDRESS SPACE SCIENCE NEEDS
- CONCEIVED SEVERAL INNOVATIVE APPROACHES FOR SUBKELVIN APPLICATIONS

SENSORS RESEARCH AND TECHNOLOGY KEY POINTS OF CONTACT

		POINT OF CONTACT	LOCATION
PRO	OGRAM MANAGEMENT		NASA/CODE RC (202) 453-2748
TE	CHNICAL		
303	CO-CHAIRMAN, SENSORWORKING GROUP	C. McCREIGHT	AMES RESEARCH CENTER (415) 694-6549
	PASSIVE COHERENT SENSING		JET PROPULSION LABORATORY (818) 354-4902
	PASSIVE NON-COHERENT SENSING	C. McCREIGHT	AMES RESEARCH CENTER (415) 694-6549
	ACTIVE SENSING	F. ALLARIO	LANGLEY RESEARCH CENTER (804) 865-3601
	SPACE COOLER TECHNOLOGY	S. CASTLES	GODDARD SPACE FLIGHT CENTER (301) 286-8986

30

3

NASA

SENSOR RESEARCH AND TECHNOLOGY FUTURE PLANS

- IMPLEMENTATION OF THE CSTI SCIENCE SENSOR PROGRAM
- IDENTIFY SCIENCE SENSOR NEEDS DRIVEN BY FUTURE PROGRAMS
 - PATHFINDER PLANETARY AND LUNAR SURFACE EXPLORATION
 - □ GLOBAL CHANGE TECHNOLOGY
- IDENTIFY OPPORTUNITIES CREATED BY NEW TECHNOLOGIES
 - □ OPTICS
 - □ PHOTONICS
 - □ HIGH T_C SUPERCONDUCTIVITY